题意:
求有多少对正整数$(x, y)$满足$\frac 1 x + \frac 1 y = \frac 1 {n!}$
题解:
所以答案就是$(n!) ^ 2$的约数个数,调和级数的复杂度搞就好了。
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
using namespace std;
const int mod = 1000000007;
int n, s[1000010];
vector<int> prime;
bool is_prime[1000010];
long long ans = 1;
void pre(int n)
{
memset(is_prime, 1, sizeof(is_prime));
for (int i = 2; i <= n; i++)
{
if (is_prime[i])
{
prime.push_back(i);
}
for (int j = 0; j < prime.size() && prime[j] * i <= n; j++)
{
is_prime[prime[j] * i] = 0;
if (i % prime[j] == 0) break;
}
}
}
int main()
{
scanf("%d", &n);
pre(n);
for (int i = 0; i < prime.size(); i++)
{
int sum = 0;
for (int j = prime[i]; j <= n; j += prime[i])
{
s[j] = s[j / prime[i]] + 1;
sum += s[j];
}
ans = ans * (sum * 2 + 1) % mod;
for (int j = prime[i]; j <= n; j += prime[i])
s[j] = 0;
}
printf("%lld\n", ans);
}