tkj
文章143
标签102
分类0
向量、几何相关知识

向量、几何相关知识

.

0. 记号

$\mathbf a$或$\vec a$表示向量

$\mathbf{i, j}$分别表示$x$方向、$y$方向的单位向量

1. 叉积

$\mathbf{i \times j} = 1\ \mathbf{j \times i} = 0 \ \mathbf{a \times a} = 0$

$\mathbf{a \times b = |a||b|}\sin \theta = (x_1\mathbf i + y_1\mathbf j) \times (x_1\mathbf i + y_1\mathbf j) = x_1 y_2 - x_2 y_1$

2. 点积

$\mathbf{i \cdot j} = 0\ \mathbf{j \cdot i} = 0 \ \mathbf{a \cdot a} = |\mathbf a| ^ 2$

$\mathbf{a \cdot b = |a||b|}\cos \theta = (x_1\mathbf i + y_1\mathbf j) \cdot (x_1\mathbf i + y_1\mathbf j) = x_1 x_2 + y_1 y_2$

3. 和角公式

设$\mathbf a = (\cos \alpha, \sin \alpha), \mathbf b = (\cos \beta, \sin \beta), \beta > \alpha$

$|\mathbf a| = |\mathbf b| = 1$

余弦

$\mathbf{a \cdot b = |a||b|}\cos(\beta - \alpha) = \cos(\beta - \alpha)$

$\mathbf{a \cdot b = }\cos \alpha \cos \beta + \sin \alpha \sin \beta$

$\cos (\alpha - \beta) = \cos (\beta - \alpha) = \cos \alpha \cos \beta + \sin \alpha \sin \beta$

$\cos(\alpha + \beta) = \cos (\alpha - (-\beta)) = \cos \alpha \cos \beta - \sin \alpha \sin \beta$

正弦

$\mathbf{a \times b = |a||b|}\sin (\beta - \alpha) = \sin(\beta - \alpha)$

$\mathbf{a \times b} = \cos \alpha\sin \beta - \cos \beta \sin \alpha$

$\sin(\alpha - \beta) = - \sin(\beta - \alpha) = \cos \beta \sin \alpha - \cos \alpha \sin \beta$

$\sin(\alpha + \beta) = \sin(\alpha - (-\beta)) = \cos \beta \sin \alpha + \cos \alpha \sin \beta$

4. 向量旋转

设$\mathbf a = (x, y) = k(\cos \alpha, \sin \alpha)$逆时针旋转$\theta$至$\mathbf b$

$\mathbf b = k(\cos(\alpha + \theta), \sin(\alpha + \theta)) = k(\cos \alpha \cos \theta - \sin \alpha \sin \theta, \sin \alpha \cos \theta + \sin \theta \cos \alpha) = (x \cos \theta - y \sin \theta, y \cos \theta + x \sin \theta)$

5. 切比雪夫距离与曼哈顿距离

与某个点切比雪夫距离为1的点围成了一个正着的正方形,曼哈顿距离为一个斜着的正方形。切比雪夫边长是曼哈顿的$\sqrt 2$倍,并且旋转了$\frac \pi 4$。

切->曼:$(x, y) \to \frac{\sqrt 2}{2}(x \cos \frac \pi 4 - y \sin \frac \pi 4, x \cos \frac \pi 4 + y \sin \frac \pi 4) = (\frac{x - y} 2, \frac{x + y} 2)$

曼->切:$(x, y) \to \sqrt 2(x \cos \frac \pi 4 - y \sin \frac \pi 4, x \cos \frac \pi 4 + y \sin \frac \pi 4) = (x - y, x + y)$

本文作者:tkj
本文链接:https://tkj666.github.io/94/
版权声明:本文采用 CC BY-NC-SA 3.0 CN 协议进行许可